分治算法

Posted by HK on March 21, 2019

数模学习第6天~

分治算法的定义

对于一个规模为n的问题,若该问题可以容易地解决(比如说规模n较小)则直接解决,否则将其分解为k个规模较小的子问题,这些子问题互相独立且与原问题形式相同,递归地解这些子问题,然后将各子问题的解合并得到原问题的解。这种算法设计策略叫做分治法。

分治算法的基本思想

分治法的设计思想是,将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。

任何一个可以用计算机求解的问题所需的计算时间都与其规模有关。问题的规模越小,越容易直接求解,解题所需的计算时间也越少。例如,对于n个元素的排序问题,当n=1时,不需任何计算。n=2时,只要作一次比较即可排好序。n=3时只要作3次比较即可,…。而当n较大时,问题就不那么容易处理了。要想直接解决一个规模较大的问题,有时是相当困难的。

如果原问题可分割成k个子问题,1< k ≤ n ,且这些子问题都可解,并可利用这些子问题的解求出原问题的解,那么这种分治法就是可行的。由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。这自然导致递归过程的产生。分治与递归像一对孪生兄弟,经常同时应用在算法设计之中,并由此产生许多高效算法。

分治算法应用条件

  1. 问题的规模缩小到一定的程度。
  2. 问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质。
  3. 利用问题分解出的子问题的解可以合并为该问题的解。
  4. 问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子问题。

上述的第一条特征是绝大多数问题都可以满足的,因为问题的计算复杂性一般是随着问题规模的增加而增加;第二条特征是应用分治法的前提,它也是大多数问题可以满足的,此特征反映了递归思想的应用;第三条特征是关键,能否利用分治法完全取决于问题是否具有第三条特征,如果具备了第一条和第二条特征,而不具备第三条特征,则可以考虑贪心法或动态规划法。第四条特征涉及到分治法的效率,如果各子问题是不独立的,则分治法要做许多不必要的工作,重复地解公共的子问题,此时虽然可用分治法,但一般用动态规划法较好。

分治法的基本步骤

分治法在每一层递归上都有三个步骤:

  1. 分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题。
  2. 解决:若子问题规模较小而容易被解决则直接解,否则递归地解各个子问题。
  3. 合并:将各个子问题的解合并为原问题的解。

一般的算法设计模式:

Divide-and-Conquer(P)	
1.if |P|≤n0 
2.then return(ADHOC(P))
3.将P分解为较小的子问题 P1 ,P2 ,...,Pk
4.for i←1 to k 
5.do yi ← Divide-and-Conquer(Pi)  △ 递归解决Pi
6.T ← MERGE(y1,y2,...,yk)         △ 合并子问题
7.return(T)
  • 其中|P|表示问题P的规模;n0为一阈值,表示当问题P的规模不超过n0时,问题已容易直接解出,不必再继续分解。
  • ADHOC(P)是该分治法中的基本子算法,用于直接解小规模的问题P。

因此,当P的规模不超过n0时,直接用算法ADHOC(P)求解。算法MERGE(y1,y2,…,yk)是该分治法中的合并子算法,用于将P的子问题P1 ,P2 ,…,Pk的相应的解y1,y2,…,yk合并为P的解。在用分治法设计算法时,最好使子问题的规模大致相同,即将一个问题分成大小相等的k个子问题。